Acknowledgment. This work was supported by NIH Grant CA17918.

Registry No. la, 88358-41-2; **lb,** 88358-42-3; **IC,** 87598-28-5; **Id,** 88358-43-4; **le,** 88358-44-5; **lf,** 88358-45-6; **lg,** 88358-46-7; 2, 84850-27-1; **3** ($R' = H$; $R = CH = CH_2$), 88358-60-5; **3a**, 88358-52-5; **3b,** 88358-53-6; **3c,** 88358-54-7; **3d,** 88358-55-8; **3e,** 88358-56-9; **3f,** 77242-15-0; **3** (R' = H; R = H), 88358-59-2; **3** (R' = H; R = t-Bu), 88358-57-0; **3g**, 88358-58-1; 4, 88358-61-6; **5** $(\mathbb{R}^{\prime\prime} = \mathbb{H})$, 88358-62-7; **6** $(\mathbb{R}^{\prime\prime} = \mathbb{C}\mathbb{H}_{3})$, 5682-78-0; PhCH₂CH₂CHO, 104-53-0; PhC(O)-PhCOCH₂Cl, 532-27-4; PhCH₂CH₂C(SPh)=0, 53573-33-4; cy- $CH₂OAc$, 2243-35-8; $CH₃CH(OBr)\tilde{CH}(Ac)CHO$, 88358-47-8; clohexenone, 25512-62-3; cyclododecanone, 830-13-7; 2-acetoxycyclohexanone, 17472-04-7; cyclohexane-l,3-dione, 504-02-9; 2 methylnonane-3,5-dione, 88358-48-9; cyclododecanethiol, 7447- 11-2; **2-(acetyloxy)cyclohexanethiol,** 73921-29-6; 3-phenylpropanethiol, 24734-68-7; **2-(acetyloxy)-2-phenylethanethiol,** 88358-49-0; **2-(acetyloxy)-3-(benzyloxy)butanethiol,** 88358-50-3; **3-mercaptocyclohexanone,** 33449-52-4; 5-mercapto-1-methylnonan-3-one, 88358-51-4; deoxybenzoin, 451-40-1; fluorenone, 486-25-9.

E. Vedejs,* D. A. Perry

S. M. McEluain Laboratory *of* Organic Chemistry Department *of* Chemistry, University *of* Wisconsin Madison, Wisconsin 53706 Received October 17, 1983

Stable Vinyl Cations. 2.' Carbon-13 NMR Spectroscopic Observation of a **Substituted Cyclopropylidenemethyl Cation**

Summary: 13C **NMR** Spectroscopic data show the effective stabilization of the **l-cyclopropylidene-3-methyl-2-butenyl** cation in solution.

Sir: The stabilizing ability of a cyclopropyl ring is well**known** in trisubstituted **as** well **as** in disubstituted carbenium ions.2 However, for vinyl cations there is a unique opportunity for stabilization by a cyclopropyl group, when one carbon of the cyclopropane ring is part of the vinyl cation, as in the cyclopropylidenemethyl cation 1.³

$$
\sum_{\substack{\beta \alpha \\ 1}} \frac{1}{\alpha} R \longrightarrow \sum_{\substack{\alpha \\ 1}} \frac{1}{\beta} = -R
$$

Cations 1 were first postulated as intermediates in the homopropargyl rearrangement.⁴ The rapid solvolysis of cyclopropylidenemethyl bromide has been attributed to the high stability of the intermediate vinyl cation.⁵ This conclusion is supported by ab initio and MIND0/3 calculations6 and by experimental evidence for **l** in the gas phase.⁷

Figure 1. 100.62-MHz 13C NMR spectrum of cation 3 in SO_2ClF/SO_2F_2 (2:1) at -100 °C.

Vinyl cations have been rather elusive toward direct 13C NMR spectroscopic observation;8 however, we have shown recently that α -vinyl-substituted vinyl cations can be generated from tertiary α -allenyl alcohols as stable species in solution.' We report here the first successful generation and NMR spectroscopic observation of the l-cyclo**propylidene-3-methyl-2-butenyl** cation **3.9**

A clean yellow solution of 3 in SO_2CIF/SO_2F_2 was obtained by reaction of **21°** with SbF5 by using the method already described.¹¹ The ¹³C NMR spectrum (Figure 1) was recorded at -100 °C. Assignments were made by using proton-coupled spectra. Single-frequency proton-decoupled spectra were used to confirm these assignments.¹² C_3 shows long-range couplings to six methyl protons and thus could be distinguished from C₁.

Cation 3 can be considered either as a α -vinyl- β -cyclopropyl-stabilized vinyl cation **(3')** or as a cyclopropylidene-substituted allyl cation **(3").** The downfield

shifts of C_1 (202.66 ppm) and C_3 (228.92 ppm)⁹ indicate extensive charge delocalization between these **two** positions. Comparison of 3 with the analogous C_1 -isopropylidene-substituted cation **5l** (Table I) reveals sig-

nificant differences. The corresponding allyl carbons in **5,** C_3 **(257.64 ppm) and especially** C_1 **(245.39 ppm), are** much more deshielded than those in 3. The C₃ carbons in **3** and **5** have almost identical chemical shift values in the precursor alcohols **2** and **4.** The problem of neighboring group effects is minimized for C_3 since the substituent change is occuring at C_1 , which is effectively screened from C_3 .¹³ We attribute the 29-ppm shielding of C_3 in 3 to the superior electron-donating capability of the β -cyclopropyl ring compared to the effect of two β methyl groups in vinyl cation **5.** Calculations (STO-3G) have shown that a β -cyclopropyl ring stabilizes a primary

⁽¹⁾ Stable Viyl Cations. **1:** Siehl, H.-U.; Mayr, H. *J. Am. Chem.* SOC. **1982, 104, 909.**

⁽²⁾ (a) le Noble, W. J. *Highlights of Organic Chemistry"; Marcel Dekker: New York, 1974; Chapter 20. (b) Olah, G. A., Schleyer, P. v. R., Eds. "Carbonium Ions"; Wiley-Interscience: New York, 1972; Vol. 3, Chapters **25** and **26.**

⁽³⁾ Stang, P. J.; Rappoport, Z.; Hanack, M.; Subramanian, L. R. "Viyl

Cations"; Academic Press: New York, 1979.
(4) (a) Hanack, M.; Häffner, J.; Herterich, H. *Tetrahedron Lett*. 1965,
875. (b) Hanack, M.; Bocher, S.; Herterich, J.; Hummel, K.; Vott, K.

Juatua Liebigs Ann. Chem. **1970, 733, 5. (5)** (a) Biissler, **T.;** Hanack, M. *Tetrahedron Lett.* **1971, 2171.** (b)

Hammen, G.; Bässler, T.; Hanack, M. Chem. Ber. 1974, 107, 1676.

(6) Apeloig, Y.; Collins, J. B.; Cremer, D.; Bally, T.; Haselbach, E.;

Pople, J. A.; Chandrasekkar, J.; Schleyer, P. v. R. J. Org. Chem. 1980, 45, **3496.**

⁽⁷⁾ Franke, W.; Schwarz, H.;Stahl, D. J. *Org. Chem.* **1980,** *45,* **3493.**

⁽⁸⁾ See ref **3,** Chapter **8.**

⁽⁹⁾ For clarity we use here a different carbon numbering sceme from that given in ref **1.**

⁽¹⁰⁾ Details of the synthesis of **2** will be reported in a full paper. **(11)** Saunders, M.; Cox, D.; Lloyd, J. R. J. *Am. Chem. SOC.* **1979,101, 6656.**

⁽¹²⁾ 'H NMR spectra will be discussed in a full paper.

⁽¹³⁾ For a detailed study of allyl cations, see: Olah, G. A.; Spear, R.

J. *J. Am. Chem. SOC.* **1975, 97, 1539.**

Table I. ¹³C NMR Chemical Shifts of Vinyl Cations 3 and 5 and Their Precursors 2 and 4^a

compd		ັ	ີ	ັ		ັ	ັ ັ
	186.35	103.53	70.10	29.98		80.66	7.81
	202.66	111.72	228.92	27.18	30.62	63.66	39.63
4 ^b	197.92	99.01	69.01	29.51		97.86	20.10
5^{o}	245.39	113.97	257.64	32.43	36.44	101.55	16.29

^{*a*} Compounds 2 and 4 in CDCl₃ (77.0 ppm); 3 and 5 referenced to capillary CD₃COCl (δ _{CD₃} = 32.90 ppm); specific assignment of C₄ and C₅ in 3 and 5 tentatively analogous to allyl cations. ^b Reference 1.

vinyl cation by 14 kcal/mol more than two β -methyl groups6 do.

In 3 the two methyl groups at C_3 are nonequivalent as in other allyl cations.¹³ The observed smaller downfield shifts, compared to the precursor, reflect less need for hyperconjugative stabilization from these methyl groups due to less positive charge at C_3 in 3 as compared to 5 . Electron donation from the cyclopropyl ring at C_1 decreases electron density at **C3,** thus leading to less deshielding for this carbon than that in 5. \tilde{C}_1 is 31 ppm upfield from that in **5** even if a 12-ppm correction for the different shift in the precursors is taken into account.

Charge delocalization away from C_1 and C_3 into the β positions C_7 and C_8 of the cyclopropyl ring is indicated by the **shift** of the signals for these carbons (39.63 ppm), which is 32 ppm downfield from the precursor. This downfield shift for the β -cyclopropyl carbons is of similar magnitude to that in α -cyclopropyl-stabilized allyl cations,¹³ whereas the α -cyclopropyl carbon C_6 in 3 cannot be compared because it is unique to this type of vinyl cation.

At first glance, the upfield shift for the unsaturated cyclopropyl carbon C_6 from 80.66 ppm in 2 to 63.66 ppm in 3 is surprising. In α -cyclopropyl-substituted trigonal cations13 and also in **a-cyclopropyl-substituted** vinyl cations,¹⁴ both C_{α} and C_{β} ring carbons exhibit considerable downfield shift. The unusual shift for C_6 in 3 may be related to the unusual shift in 2, where C_6 is both terminal allenic and part of a cyclopropyl ring.

The shift of C_6 may also be rationalized by taking into account the unique structure of cyclopropylidenemethyl cations **1,** which can be looked upon as the unsaturated analogues of cyclopropylcarbinyl cations. In valence bond terminology there is a difference between 1 and α -cyclopropylcarhinyl cations in that the resonance structures of **1** include homopropargylic cation resonance forms (which of course would be given very unequal weights) whereas cyclopropylcarbinyl resonance structures would be homoallylic. In **3** this would partially change the bond between C_6 and C_1 to a triple bond, giving C_6 some sp character. Calculations on 1 show the $C_{\alpha}-\tilde{C}_{\beta}$ distance became significantly shorter than that of a double bond.6 In **3** the mutual shielding of the two sp carbons C_6 and C_1 might give rise to the substantial upfield shifts observed for these carbons.

Alternatively, the upfield shift for C_6 in $\mathrm{3}$ could be explained by polarization effects. The β carbons of vinyl cations are negatively charged,¹⁵ but preliminary calculations for model cations of type **1** and **3** do not show significant differences from **5.16**

The **13C** NMR spectroscopic data of **3** presented here show the first direct experimental proof obtained for a stable vinyl cation in solution utilizing the unique and unusually effective stabilization of such a cation by a β cyclopropyl ring. These data are in agreement with theory and give additional support to the interpretation of the $\frac{1}{2}$ solvolytic studies of these systems.

Deutsche Forschungsgemeinschaft. **Acknowledgment.** This work was supported by the

Registry **No. 3,** 88295-38-9.

Hans-Ullrich Siehl,* Ernst-Wilhelm Koch

Institut fur Organische Chemie der Universitat Tubingen 0-7400 Tubingen 1, West Germany Received October **24,** *1983*

A Convergent Asymmetric Synthesis **of** (-)-Malyngolide and Its Three Stereoisomers

Summary: (-)-Malyngolide, an antibiotic of algal origin, and its stereoisomers $(+)$ -malyngolide and $(+)$ - and $(-)$ epimalyngolide have been synthesized asymmetrically in high diastereomeric and enantiomeric purity.

Sir: Since the antibiotic (-)-malyngolide **(1)** was isolated from marine algae and its structure, including relative and absolute configuration, established in 1979,¹ a number of syntheses $2-5$ have been reported. The majority of these lack stereoselectivity, the product being a mixture of (\pm) -malyngolide and its diastereomer, (\pm) -epimalyngolide (2) , which can be separated by chromatography.³ One

synthesis4 produces racemic malyngolide stereoselectively and two others produce a mixture of $(-)$ -malyngolide and $(+)$ -epimalyngolide, either by total asymmetric synthesis^{5a} or by derivation from a chiral starting material, D-glucose. 5b We report here a convergent asymmetric synthesis in which either chiral center is produced in one or the other of the two possible configurations. In this way, not only $(-)$ -malyngolide and $(+)$ -epimalyngolide but also their enantiomers were produced in high diastereomeric and enantiomeric purity.

0022-3263/84/1949-0576\$01,50/0 *0* 1984 American Chemical Society

⁽¹⁴⁾ Siehl, **H.-U.,** unpublished results.

⁽¹⁵⁾ Apeloig, Y.; Schleyer, P. v. R.; Pople, J. A. *J. Org. Chem.* **1977, 42, 3004.**

⁽¹⁶⁾ Apeloig, Y., personal communication.

⁽¹⁾ Cardllina, J. H., 11; Moore, R. E.; Arnold, E. V.; Clardy, J. J. *Org. Chem.* **1979, 44,4039. (2)** Babler, J. H.; Invergo, B. J.; Sarussi, *S.* J. J. *Org. Chem.* **1980,45,**

^{4241.&}lt;br>
(3) Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. J. Org. Chem. 1981,

46, 2439. Torii, S.; Inokuchi, T.; Yoritaka, K. *Ibid.* 1981, 46, 5030.

Matsuo, K.; Kinuta, T.; Tanaka, K. Chem. Pharm. Bull. 1981 29, 3047.

^{1980, 1223.} (b) Pougny, J.-R.; Rollin, P.; Sinay, P. *Tetrahedron Lett.* **1982,23,4929.** (Separation of epimers was effected at a precursor stage.)